Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

نویسندگان

  • Waldemar Hoffmann
  • Therese Bormann
  • Antonella Rossi
  • Bert Müller
  • Ralf Schumacher
  • Ivan Martin
  • Michael de Wild
  • David Wendt
چکیده

While calcium phosphate-based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel-titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel-titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel-titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel-titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel-titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel-titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold's pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel-titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additively Manufactured Porous Biomaterials and Implants

Recent advances in additive manufacturing (AM) techniques (otherwise known as 3D printing) have enabled fabrication of a new class of porous biomaterials (Figure 1) with arbitrarily complex and precisely controlled topologies that e.g. resemble the geometry and micro-architecture of (trabecular) bone. Since the geometry of scaffolds and biomaterials is an important factor in bone tissue regener...

متن کامل

Novel porous Al2O3-SiO2-TiO2 bone grafting materials: formation and characterization.

The present article deals with the development of 3D porous scaffolds for bone grafting. They were prepared based on rapid fluid infiltration of Al2O3-SiO2 sol into a polyethylene non-woven fabric template structure. Titanium dioxide in concentration equal to 5 wt% was added to the Al2O3-SiO2 mixture to produce Al2O3-SiO2-TiO2 composite scaffolds. The prepared scaffolds are characterized by mea...

متن کامل

The Combined Use of Micro-ct Imaging, In-situ Loading and Non-rigid Image Registration for 3d Experimental Local Strain Mapping on Porous Bone Tissue Engineering Scaffolds under Compressive Loading

Porous structures are used in many industrial applications such as thermal insulation, packaging and filters, food and beverage, pharmaceuticals, but also in biomedical applications such as scaffolds for bone tissue engineering (TE). To understand, simulate and eventually predict the behaviour of porous structures during loading in order to assess their functionality, a thorough knowledge of th...

متن کامل

Synthesis and Characterization of Highly Porous TiO2 Scaffolds for Bone Defects

The purpose of this study was to fabricate and investigate the highly porous structure using titanium dioxide, which is a candidate for bone defect repairing. For this purpose, TiO2 scaffolds were synthesized using titanium butoxide, Pluronic F127 surfactant, and polyurethane foam blocks. Therefore, a colloid includes titanium butoxide and F127 and the polyurethane foams were immersed in it. Th...

متن کامل

THE EFFECT OF NANO BIOGLASS ON THE FABRICATION OF POROUS TITANIUM SCAFFOLDS

In this study, porous titanium composites containing 5, 10 and 15 wt. % nanobioglass were fabricated by space holder sintering process. The pore morphology and phase constituents of the porous samples were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The mechanical properties were determined by compression test. The porosity of the sintered samples show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014